
Integrated Performance Monitoring of a Cosmology Application
on Leading HEC Platforms

J. Borrill, J. Carter, L. Oliker, D. Skinner
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

{jdborrill,jtcarter,loliker,dskinner}@lbl.gov

R. Biswas
NAS Division

NASA Ames Research Center
Moffett Field, CA 94035

rbiswas@mail.arc.nasa.gov

Abstract

The Cosmic Microwave Background (CMB) is an
exquisitely sensitive probe of the fundamental parame-
ters of cosmology. Extracting this information is compu-
tationally intensive, requiring massively parallel com-
puting and sophisticated numerical algorithms. In this
work we present MADbench, a lightweight version of the
MADCAP CMB power spectrum estimation code that
retains the operational complexity and integrated sys-
tem requirements. In addition, to quantify communi-
cation behavior across a variety of architectural plat-
forms, we introduce the Integrated Performance Moni-
toring (IPM) package: a portable, lightweight, and scal-
able tool for effectively extracting MPI message-passing
overheads. A performance characterization study is
conducted on some of the world’s most powerful su-
percomputers, including the superscalar Seaborg (IBM
Power3+) and CC-NUMA Columbia (SGI Altix), as well
as the vector-based Earth Simulator (NEC SX-6 en-
hanced) and Phoenix (Cray X1) systems. In-depth anal-
ysis shows that in order to bridge the gap between the-
oretical and sustained system performance, it is critical
to gain a clear understanding of how the distinct parts
of large-scale parallel applications interact with the in-
dividual subcomponents of HEC platforms.

Keywords: Cosmic Microwave Background, MAD-
CAP, Altix Columbia, Earth Simulator, X1 Phoenix,
Power3 Seaborg, parallel performance characterization

1 Introduction

The Cosmic Microwave Background (CMB) is a
snapshot of the Universe when it first became electri-
cally neutral some 400,000 years after the Big Bang.
The tiny anisotropies in the temperature and polarization
of the CMB radiation are sensitive probes of cosmology,
and measuring their detailed statistical properties has
been a high priority in the field since its serendipitous

discovery in 1965. Since these anisotropies are O(10−5)
in temperature and O(10−7) or less in polarization, and
are imprinted on a background that has been cooled by
the expansion of the Universe to only 2.7 K today, har-
nessing the extraordinary scientific potential of the CMB
requires precise measurements of the microwave sky at
high resolution. The progressive reduction of the result-
ing datasets, first to a pixelized sky map, then to an angu-
lar power spectrum, and finally to cosmological parame-
ters, is a computationally intensive endeavor. The prob-
lem is exacerbated by an explosion in dataset sizes as
cosmologists try to make more and more accurate mea-
surements of the CMB. High-end computing (HEC) has
become an essential part of CMB data analysis, and the
effective use of such resources requires a detailed under-
standing of their performance under the demands of real
CMB data analysis algorithms and implementations.

CMB data analyses have typically been performed
on superscalar-based commodity microprocessors due
to their generality, scalability, and cost effectiveness.
However, two recent innovative parallel-vector architec-
tures — the Earth Simulator (ES) and the Cray X1 —
promise to narrow the growing gap between sustained
and peak performance for many classes of scientific ap-
plications. In addition, the new Columbia system at
NASA, constructed in just four months and continuously
operational during the build, brings an unprecedented
level of computational power at a fraction of the cost
of typical supercomputers. In order to characterize what
these platforms offer scientists that rely on HEC, it is
imperative to critically evaluate and compare them in the
context of demanding scientific applications [2, 3, 4, 5].

In this work, we present MADbench, a lightweight
version of the Microwave Anisotropy Dataset Com-
putational Analysis Package (MADCAP) CMB power
spectrum estimation code [1] that retains the opera-
tional complexity and integrated system requirements.
We compare the performance of MADbench on the ES
(NEC SX-6 enhanced) and Phoenix (Cray X1) against
those obtained on Columbia (SGI Altix) and Seaborg
(IBM Power3). To quantify communication behavior

September 2005
NAS Technical Report NAS-05-012



Table 1. Architectural specifications of the Power3, Altix, ES, and X1

CPU/ Clock Peak Mem BW Peak MPI Lat Netwk BW Bisection BW Network
Platform Node (MHz) (GF/s) (GB/s) (bytes/flop) (usec) (GB/s/CPU) (bytes/flop) Topology

Power3 16 375 1.5 0.7 0.47 16.3 0.13 0.087 Fat-tree
Altix 2 1500 6.0 6.4 1.1 2.8 0.40 0.067 Fat-tree
ES 8 500 8.0 32.0 4.0 5.6 1.5 0.19 Crossbar
X1 4 800 12.8 34.1 2.7 7.3 6.3 0.088 2D torus

across this spectrum of architectures, we developed and
utilized the Integrated Performance Monitoring (IPM)
package: a portable, lightweight, and scalable tool for
effectively extracting MPI message-passing overheads.
In-depth analysis shows that in order to bridge the gap
between theoretical and sustained system performance,
it is critical to gain a clear understanding of how the
distinct parts of large-scale parallel applications interact
with the individual subcomponents of HEC platforms.

2 Target HEC Platforms

We begin by briefly describing the salient features
of the four parallel HEC architectures that are exam-
ined here (Table 1 presents a summary). Note that the
vector machines have higher peak performance and bet-
ter system balance than the superscalar platforms. The
ES and X1 have high memory bandwidth relative to
peak CPU speed (bytes/flop), allowing them to more
effectively feed the arithmetic units. Additionally, the
custom vector interconnects show superior characteris-
tics in terms of measured inter-node MPI latency [6, 9],
point-to-point messaging (network bandwidth), and all-
to-all communication (bisection bandwidth) — both in
raw performance and as a ratio of peak processing speed.
Overall, the ES appears to be the most balanced system,
while the Altix shows the best architectural characteris-
tics among the superscalar platforms.

2.1 Seaborg (Power3)

The Power3 was first introduced in 1998 as part of
IBM’s RS/6000 series. Each 375 MHz processor con-
tains two floating-point units (FPUs) that can issue a
multiply-add (MADD) per cycle for a peak performance
of 1.5 Gflop/s. The Power3 has a pipeline of only
three cycles, thus using the registers very efficiently
and diminishing the penalty for mispredicted branches.
The out-of-order architecture uses prefetching to reduce
pipeline stalls due to cache misses. The CPU has a
32KB instruction cache, a 128KB 128-way set associa-
tive L1 data cache, and an 8MB four-way set associa-
tive L2 cache with its own private bus. Each SMP node
consists of 16 processors connected to main memory
via a crossbar. Multi-node configurations are networked

via the Colony switch using an omega-type topology.
In this model, disk I/O uses the switch fabric, sharing
bandwidth with message-passing traffic. The Power3
experiments reported here were conducted on Seaborg,
the 380-node IBM pSeries system running AIX 5.1 and
operated by Lawrence Berkeley National Laboratory
(LBNL). The distributed filesystem was configured with
16 GPFS servers, each with 32GB of main memory that
can be used to cache files and metadata. The total size
of the filesystem was 30TB, with a block size of 256KB.

2.2 Columbia (Altix 3000)

Introduced in early 2003, the SGI Altix 3000 systems
are an adaptation of the Origin 3000, which use SGI’s
NUMAflex global shared-memory architecture. Such
systems allow access to all data directly and efficiently,
without having to move them through I/O or networking
bottlenecks. The NUMAflex design enables the proces-
sor, memory, I/O, interconnect, graphics, and storage to
be packaged into modular components, called “bricks.”
The primary difference between the Altix and the Ori-
gin systems is the C-Brick, used for the processor and
memory. This computational building block for the Al-
tix consists of four Intel Itanium2 processors (in two
nodes), local memory, and a two-controller ASIC called
the Scalable Hub (SHUB). Each SHUB interfaces to two
CPUs in one node, along with memory, I/O devices,
and other SHUBs. The Altix cache-coherency proto-
col is implemented in the SHUB that integrates both the
snooping operations of the Itanium2 and the directory-
based scheme used across the NUMAflex interconnec-
tion fabric. A load/store cache miss causes the data to
be communicated via the SHUB at a cache-line granu-
larity and automatically replicated in the local cache.

The 64-bit Itanium2 architecture operates at 1.5 GHz
and is capable of issuing two MADDs per cycle for a
peak performance of 6.0 Gflop/s. The memory hierar-
chy consists of 128 FP registers and three on-chip data
caches (32KB L1, 256KB L2, and 6MB L3). The Ita-
nium2 cannot store FP data in L1, making register loads
and spills a potential source of bottlenecks; however, a
relatively large register set helps mitigate this issue. The
superscalar processor implements the Explicitly Paral-
lel Instruction set Computing (EPIC) technology where
instructions are organized into 128-bit VLIW bundles.

September 2005
NAS Technical Report NAS-05-012



The Altix platform uses the NUMAlink3 interconnect, a
high-performance custom network in a fat-tree topology
that enables the bisection bandwidth to scale linearly
with the number of processors. All Altix experiments
reported here were performed on the 10,240-processor
Columbia system running 64-bit Linux version 2.4.21,
the world’s second-most powerful supercomputer [8] lo-
cated at NASA Ames Research Center. The Columbia
experiments used a 6.4TB parallel XFS filesystem with
a 35-fiber optical channel connection to the CPUs.

2.3 Earth Simulator

The vector processor of the Earth Simulator (ES) uses
a dramatically different architectural approach than con-
ventional cache-based systems. Vectorization exploits
regularities in the computational structure of scientific
applications to expedite uniform operations on indepen-
dent data sets. The 500 MHz ES processor (an enhanced
version of the NEC SX-6) contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for
a peak performance of 8.0 Gflop/s. The processors con-
tain 72 vector registers, each holding 256 64-bit words.
For non-vectorizable instructions, the ES has a 500 MHz
scalar processor with a 64KB instruction cache, a 64KB
data cache, and 128 general-purpose registers. The four-
way superscalar unit has a peak of 1.0 Gflop/s (an eighth
of the vector performance) and supports branch predic-
tion, data prefetching, and out-of-order execution.

Like traditional vector architectures, the ES vector
unit is cache-less; memory latencies are masked by
overlapping pipelined vector operations with memory
fetches. Each SMP contains eight processors that share
the node’s memory. The ES is the world’s third-most
powerful supercomputer [8], and consists of 640 SMP
nodes connected through a custom single-stage cross-
bar. This high-bandwidth interconnect topology pro-
vides impressive communication characteristics, as all
nodes are a single hop from one another. The 5120-
processor ES runs Super-UX, a 64-bit Unix operating
system based on System V-R3 with BSD4.2 communi-
cation features. Each group of 16 nodes has a pool of
RAID disks (720GB per node) attached via fiber chan-
nel switch. The filesystem used for our tests is SFS, with
a block size of 4MB. Each node has a separate filesys-
tem, in contrast to the other architectures studied here.
As remote access is not available, the reported experi-
ments were performed during the authors’ visit to the
ES Center and by ES Center collaborators in late 2004.

2.4 Phoenix (X1)

The Cray X1 combines traditional vector strengths
with the generality and scalability features of modern

superscalar cache-based parallel systems. The com-
putational core, called the single-streaming processor
(SSP), contains two 32-stage vector pipes running at
800 MHz. Each SSP contains 32 vector registers holding
64 double-precision words, and operates at 3.2 Gflop/s
peak for 64-bit data. The SSP also contains a two-way
out-of-order superscalar processor running at 400 MHz
with two 16KB instruction and data caches. Like the
SX-6, the scalar unit operates at 1/8-th the vector per-
formance, making a high vector operation ratio critical
for effectively utilizing the underlying hardware.

The multi-streaming processor (MSP) combines four
SSPs into one logical computational unit. The four
SSPs share a 2-way set associative 2MB data Ecache,
a unique feature that allows extremely high bandwidth
(25–51 GB/s) for computations with temporal data lo-
cality. MSP parallelism is achieved by distributing loop
iterations across each of the four SSPs. An X1 node
consists of four MSPs sharing a flat memory, and large
system configurations are networked through a modified
2D torus interconnect. The torus topology allows scala-
bility to large processor counts with relatively few links
compared with fat-tree or crossbar interconnects; how-
ever, this topological configuration suffers from limited
bisection bandwidth. All reported X1 results were ob-
tained on Phoenix, the 256-MSP system running UNI-
COS/mp 2.4 and operated by Oak Ridge National Lab-
oratory (ORNL). This machine has four nodes available
for I/O, each of which is connected to a RAID array us-
ing fiber channel arbitrated loop protocol. Data transfer
from a batch MSP must travel over the interconnect to
one of the I/O nodes. The filesystem used in this study
is a 4TB XFS filesystem, with a block size of 64KB.

3 Integrated Performance Monitoring

Integrated Performance Monitoring (IPM) is a
portable performance profiling infrastructure that binds
together communication, computation, and memory in-
formation from the tasks in a parallel application into a
single application-level profile. IPM provides a light-
weight portable mechanism for workload-wide paral-
lel profiling that does not require user intervention and
scales to thousands of processors. As the application
executes on the parallel platform, IPM records a per-
process profile of computation and communication us-
ing a small fixed memory footprint and very low CPU
overhead. When the application terminates, a report of
the aggregate profile is generated. In this work, IPM
was used on all the target architectures as a probe of the
amount of communication. There are other ways one
can obtain this information within a procedural context.
For example, MPIP [10] is a name-shifted profiling li-
brary that records the call stack for each MPI call. Cur-

September 2005
NAS Technical Report NAS-05-012



Figure 1. Program control flow from the application through MPI to the IPM layer

rently, determining the call stack on a variety of architec-
tures presents a technical challenge we chose to avoid.

The basic mechanism by which IPM operates is the
name-shifted profiling interface specified in the MPI
standard. Name-shifted profiling wrappers have been
widely used [7] to determine the nature of communi-
cation within parallel codes. The entry point to each
MPI call is replaced with another that wraps a call to
the PMPI entry point.MPI Pcontrol is called directly
from the application to mark the code region to be pro-
filed. The profile is stored in a hash table that is keyed off
the region, MPI call, message size, and the rank to which
the message was sent or received (in the case of point-to-
point communications). Figure 1 shows a schematic of
this process. We are thus able to compute basic statistics
like average, minimum, and maximum for the times that
each rank spends in an MPI call for every buffer size.
For point-to-point calls, we also track the other rank in-
volved in the communication and thereby determine the
topological character of the communication.

The principal benefit of using IPM is that it pro-
vides sufficient contextual clarity to separately analyze
the communication in each of the distinct computational
steps within MADbench. Since each functional compo-
nent has a specific algorithmic or data movement role
in the overall calculation, having region-specific timings
allows one to compare measurements with estimates de-
rived analytically or from microbenchmarks. Analy-
ses of parallel performance that treats the application
as a whole does not provide this level of detail. Be-
cause MADbench uses ScaLAPACK extensively, IPM
also provides insights into the communication primitives
used by an otherwise opaque library call.

To ensure that IPM accurately measures communi-
cation time, we investigated the different implementa-
tions of ScaLAPACK across the target machines. Since
IPM records the time spent in MPI calls, we must know
that all communication is done via MPI or that non-MPI
communication is negligible. For the architectures stud-
ied here, we were able to verify this either by checking

directly with vendor documentation or by testing with
platform-specific profiling tools (PAT, ftmpirun, etc.).
Phoenix and ES spend negligible time in non-MPI com-
munication within ScaLAPACK, while the Seaborg and
Columbia implementations are based entirely on MPI.

In the current work, we use IPM strictly for determin-
ing information about communication occurring within
the MADbench code. No analysis of data obtained from
hardware performance counters was conducted. The
present analysis can be extended by investigating the
distribution of message sizes, communication topology,
and hardware performance counters occurring within
each of the code regions and across architectures. We
currently lack the right tools for fully analyzing the per-
formance profiles generated by IPM. In future, we plan
to expand the scope and level of detail by such analysis.

4 MADbench Overview

The MADCAP CMB angular power spectrum esti-
mator uses Newton-Raphson iteration to locate the peak
of the spectral likelihood function. This involves calcu-
lating the first two derivatives of the likelihood function
with respect to the power spectrum coefficientsCl (since
the CMB is azimuthally symmetric, the full spherical
harmonic basis can be reduced to include thel-modes
only). For a noisy pixelized CMB sky mapdp = sp+np

(data is signal plus noise) and pixel-pixel correlation ma-
trix Dpp′ = Spp′(Cl) + Npp′ , the log-likelihood that the
observed data comes from some underlying set ofCl is

L(dp|Cl) = −1
2

(
dT D−1d + Tr[lnD]

)
whose first two derivatives with respect to theCl are

∂L
∂Cl

=
1
2

(
dT D−1 ∂S

∂Cl
D−1d− Tr

[
D−1 ∂S

∂Cl

])
∂2L

∂Cl∂Cl′
= −dT D−1 ∂S

∂Cl
D−1 ∂S

∂Cl′
D−1d +

1
2
Tr

[
D−1 ∂S

∂Cl
D−1 ∂S

∂Cl′

]

September 2005
NAS Technical Report NAS-05-012



yielding a Newton-Raphson correction to an initial guess
of the spectral coefficients

δCl =
[

∂2L
∂Cl∂Cl′

]−1
∂L
∂Cl′

Typically, the data has insufficient sky coverage and/or
resolution to obtain each multipole coefficient individu-
ally, and so we bin them instead, replacingCl with Cb.

Given the size of the pixel-pixel correlation matri-
ces, it is important to minimize the number of matrices
simultaneously held in memory; the MADCAP imple-
mentation is constrained to have no more than three ma-
trices in core at any one time. It’s operational steps, and
their scalings for a map withNPIX pixels andNMPL mul-
tipoles inNBIN bins, are:
1. Calculate the signal correlation derivative matrices
∂S/∂Cb; complexity is O(NMPL× NPIX2).
2. Form and then invert the data correlation matrixD =∑

b Cb ∂S/∂Cb + N ; complexity is O(NPIX3).
3. For each bin, calculateWb = D−1∂S/∂Cb; complex-
ity is O(NBIN× NPIX3).
4. For each bin, calculate∂L/∂Cb; complexity is
O(NBIN× NPIX2).
5. For each bin-bin pair, calculate∂2L/∂Cb∂Cb′ ; com-
plexity is O(NBIN2 × NPIX2).
6. Invert the bin correlation matrix∂2L/∂Cb∂Cb′ and
calculate the spectral correctionδCb; complexity is
O(NBIN3).

Note that steps 4–6 are computationally subdominant
asNBIN << NMPL << NPIX.

All pixel-pixel correlation matrices are ScaLAPACK
block-cyclic distributed, so each processor carries a
unique subset of the rows and columns of each matrix.
All I/O is performed in terms of this distribution, with
each processor writing its subset of the full matrix to
its own file. This has the advantage of simplicity when
the matrices need to be read back in, and avoids any
problems with the ES’s distributed filesystem. However,
since the reading or writing of a matrix now involves all
processors simultaneously trying to perform their own
I/O, there is the possibility for significant contention.
This is minimized by restricting the actual number of
processors performing concurrent I/O to a user-specified
fraction of the total, implemented using a simple token-
passing scheme. The specified fraction can be differ-
ent for reading (RMOD) and writing (WMOD), and numeri-
cal experiments are performed to optimize the values of
these parameters — as well as the ScaLAPACK block
size (BSIZE) — on each architecture.

The full MADCAP spectral estimator includes a large
number of special-case features, from preliminary data
checking to marginalization over foreground templates,
that dramatically increase the size and complexity of
the code without altering its basic operational structure.

For simplicity, we have therefore developed a stripped-
down version, called MADbench, expressly designed
for benchmarking that preserves all the computational
challenges of the problem while removing extraneous
bells and whistles. MADbench consists of three func-
tions: dSdC, invD, and W, that respectively perform the
dominant steps 1–3 above. (W also performs a slightly
simplified version of the subdominant steps 4–6 to con-
firm code correctness.) In order to understand the overall
performance, it is useful to lay out the overall sequence
of calculation, communication, and I/O for each func-
tion:

dSdC For each binb, calculate the local subset of the
∂S/∂Cb matrix using Legendre recursion and write it to
disk. This function involves neither communication nor
reading. The innermost loop of the recursion had to be
rewritten to take advantage of the vector architectures.

invD For each binb, read in the local subset of the
∂S/∂Cb matrix and weighted-accumulate it to build the
local subset of the data correlation matrixD; invert this
by Cholesky decomposition and triangular solution us-
ing the ScaLAPACKpdpotrf andpdpotri routines.
This function involves no writing.

W For each binb, read in the local subset of the
∂S/∂Cb matrix and perform the dense matrix-matrix
multiplication Wb = D−1∂S/∂Cb using the ScaLA-
PACK pdgemm routine. This function again requires no
writing. Note that the multiplications are entirely in-
dependent of one another; we therefore compare two
implementations: the first proceeding as above, and
the second introducing a level of gang-parallelism, with
NGANG of the∂S/∂Cb matrices each being remapped to
a different subset of the processors using the ScaLA-
PACK pdgemr2d function and all of the processor-
gangs then simultaneously callingpdgemm.

5 Parallel Performance Results

MADbench requires six parameters to be specified.
Two set the size of the run (NPIX andNBIN), and one
the degree of gang-parallelism (NGANG). The other three
parameters (RMOD, WMOD, andBSIZE) need to be tuned
for each architecture and were set as follows: Seaborg
(4,1,128), Columbia (1,1,32), ES (1,1,64), and Phoenix
(1,1,128). We ran MADbench on P= 16, 64, and 256
processors on all architectures, and on P= 1024 where
possible (Seaborg and ES). In each case, the number of
bins was fixed atNBIN = 16, and the number of pixels
chosen to keep the total data volume per processor con-
stant,NPIX = 5000×P/16. Each configuration was run
with no gang-parallelism (NGANG = 1), and then only
W was rerun withNGANG = 16. Each experiment was
repeated several times, with the best runtimes reported.

September 2005
NAS Technical Report NAS-05-012



5.1 Overall Performance

We first give a high level overview of MADbench
performance on the architectures described in Section 2
for a variety of problem sizes. In the next subsection
(Section 5.2), we increase the level of detail by conduct-
ing similar performance analyses within the context of
each important functional component (dSdC, invD, and
W) that constitutes MADbench. In a broad sense, MAD-
bench spends almost all of its time calculating, commu-
nicating, or reading/writing data to disk. We identify the
time associated with each of these activities as CALC,
MPI, and I/O in the remainder of this paper. We add an-
other metric, called LBST, which measures load balanc-
ing including synchronization time. When proceeding
from one functional component to the next, we impose a
barrier in order to have a well-defined boundary between
the phases. LBST records the time when all processes do
not reach these barriers at exactly the same time.

It is useful to identify the runtimes associated with
each of these four broad categories to most directly un-
derstand which subsystems of a computing platform are
stressed during the course of a calculation. As the prob-
lem size and concurrency increase, we expect changes
in the relative fraction of time spent in I/O, MPI, CALC,
and LBST to provide the clearest indication of the nature
of the scaling bottlenecks present in MADbench.

Ultimately, however, the absolute timings are the
most important factor when making architectural perfor-
mance comparisons. Table 2 shows the execution times
for each functional component of MADbench for vari-
ous processor counts on each of the four platforms. For
all but the very smallest problem size (P= 16), the ES
shows the best absolute performance in terms of time-
to-solution (Phoenix outperforms the ES for P= 16).
In terms of percentage of theoretical peak performance
(% TPP), Seaborg demonstrates the best results except
for P= 1024 when the ES is superior.

We now focus on the scaling of I/O, MPI, CALC, and
LBST timings for each architecture. Figure 2 shows the
relative amount of time spent in each of these activities.

On Seaborg, the relative amount of time spent in I/O
decreases as the problem size and concurrency increase.
However, the I/O time actually increases more than
threefold asP grows from 16 to 1024. This shows that
while there is contention for the I/O resource, it is not
sufficient to impact code scalability significantly. The
relative amounts of time spent communicating (MPI)
and computing (CALC) remain constant for P= 64,
256, and 1024. Since Seaborg is composed of 16-way
SMPs, the MPI time for P= 16 is misleading because
no data movement occurs over the switch. CALC is the
predominant activity; this is understandable given the
relatively slow (375 MHz) CPUs in this SP cluster.

Table 2. Overall MADbench performance

Time (s) % TPP
Platform P dSdC invD W TOTAL TOTAL

Seaborg 16 42.9 36.5 311.2 390.6 45.0
(Power3) 64 44.5 60.1 608.8 713.4 49.0

256 56.1 107.7 1209.9 1373.7 50.7
1024 121.3 214.8 2466.7 2802.8 49.6

ES 16 23.8 43.8 63.3 130.9 25.2
(SX-6 64 28.9 48.9 98.9 176.7 37.1
enhanced) 256 29.2 58.6 173.9 261.7 49.9

1024 31.8 94.5 321.4 447.7 58.3
Phoenix 16 3.1 9.2 45.5 57.8 35.6
(X1) 64 51.8 106.0 86.1 243.9 16.8

256 1029.3 379.0 421.4 1829.7 4.5
Columbia 16 58.2 7.2 163.2 228.6 19.2
(Altix) 64 117.2 14.1 306.6 437.9 19.9

256 483.4 23.8 409.4 916.6 19.0

Figure 2. Relative timings for MADbench

On the ES, the I/O timings do not increase appre-
ciably with concurrency. The filesystems on the ES
are semi-local RAID arrays attached to each 128 CPUs.
Since the I/O resources scale with concurrency, the per-
formance trend makes sense. As with Seaborg, the rel-
ative amount of time spent in I/O decreases as the prob-
lem is scaled up. This however comes at the cost of not
having a parallel filesystem. In calculations where ex-
ternal data must be read in, the staging time of datasets
to the different filesystems could become a significant
bottleneck. The overall trends in MPI and CALC are
smooth functions of concurrency. The amount of MPI
time increases dramatically (10x) between 16 and 1024
tasks, but represents only a small fraction of total time.
CALC increases by a factor of 6x over the same range
but doubles its contribution to the overall runtime.

On Phoenix, the trends seen in CALC, MPI, and I/O
are smooth functions of concurrency. For this X1 ar-
chitecture, the scaling of I/O becomes the predominant
bottleneck at about P= 64. It is unclear to the authors
what is the expected level of I/O parallelism for this ma-
chine. From our measurements, it appears that a scal-
ing threshold in I/O has been crossed or that the manner

September 2005
NAS Technical Report NAS-05-012



in which MADbench performs I/O interferes with the
filesystem. The primary contribution to the I/O time was
from writing and synchronizing at the barrier following
the writes. This is consistent with the presence of a limit
to the number of simultaneous parallel writes and thus a
serialization in I/O for large problem sizes.

Unlike the other platforms, the trends are not as
smooth on Columbia. For some runs, we observe the
MPI time to decrease with increasing problem size. This
is clearly unexpected and the variation in these timings
is under investigation. For instance, although all calcu-
lations were performed on the same 512-way SMP, it is
unclear whether the placement of tasks was done in a
consistent fashion by the OS. However, results demon-
strate that I/O is the predominant component of runtime
at and above 256-way runs. As with Phoenix, most of
the I/O time is spent in writing data within dSdC. We
note that a significant (3.6x) increase in I/O occurs be-
tween P= 16 and 64. Since there are 35 independent
links to the filesystem in use, it is possible that the num-
ber of channels to disk had become saturated.

5.2 Performance of Individual Functions

The detailed performance of MADbench is better un-
derstood by separately examining each of the functional
components of the code.

dSdC Table 3 presents the timing breakdowns for
dSdC. Results show that for P= 64, the ES achieves
the highest raw performance, approximately 1.5x, 1.8x,
and 4x faster than Seaborg, Phoenix, and Columbia, re-
spectively. Due to the weak scaling nature of the prob-
lem, CALC remains roughly constant as concurrency in-
creases, with Phoenix showing the fastest values; how-
ever, ES attains the best CALC TPP (19.0%) followed
by Phoenix (16.5%), Seaborg (6.7%) and Columbia
(2.7%). The original dSdC implementation relied on
fine-grained recursive computations that prevented ef-
fective vectorization. A customized version was there-
fore developed for the ES and X1 so that at each recur-
sion a large batch of angular separations is computed in
the inner loop, allowing high vector performance. This,
coupled with their superior memory bandwidth charac-
teristics lead to the significantly higher performance of
the vector architectures over the superscalar machines.

In terms of dSdC’s I/O behavior (dominated by
data writing), all systems show significant performance
degradation at the highest concurrencies — except for
ES whose local filesystem is insensitive to the degree
of parallelism. This is particularly true for Phoenix and
Columbia where performance drops precipitously for
256 processors, resulting in I/O bandwidth of only 0.2
Mb/s/P and 0.4 Mb/s/P, respectively.

Table 3. Detailed timings for dSdC

Plat- Time (s) Mb/s/P % TPP
form P LBST I/O CALC TOT BW TOT CALC

Sbg 16 3.3 9.7 29.9 42.9 20.6 4.7 6.7
64 4.1 11.1 29.3 44.5 18.0 4.5 6.8

256 4.1 22.2 29.8 56.1 9.0 3.6 6.7
1024 4.6 86.9 29.8 121.3 2.3 1.6 6.7

ES 16 0.1 21.7 2.0 23.8 9.2 1.6 19.2
64 0.1 26.8 2.0 28.9 7.5 1.3 19.0

256 0.1 27.1 2.0 29.2 7.4 1.3 18.9
1024 0.7 29.1 2.0 31.8 6.9 1.2 18.5

Phx 16 0.1 1.6 1.4 3.1 124.2 7.6 16.6
64 0.1 50.3 1.4 51.8 4.0 0.5 16.5

256 0.1 1027.8 1.4 1029.3 0.2 0.0 16.3
Cmb 16 17.6 21.3 19.3 58.2 9.4 0.9 2.6

64 18.4 80.4 18.4 117.2 2.5 0.4 2.7
256 1.0 464.1 18.3 483.4 0.4 0.1 2.7

Figure 3. Relative timings for dSdC

Finally, the LBST metric (computational load imbal-
ance) shows a non-trivial cost for the superscalar sys-
tems, accounting for approximately 15% of the total
overhead on Seaborg and Columbia for the 64-processor
case; the vector systems are mostly unaffected.

Figure 3 shows the relative performance breakdown
of dSdC for each platform. These results clearly demon-
strate that at high concurrencies, the relative I/O cost in-
creasingly dominates the overall runtime. Note, how-
ever, that on the ES, the ratio between computation and
I/O remains roughly constant due to the local filesystem.

invD The breakdown of invD runtime components are
shown in Table 4. Since this function performs dense
linear algebra operations, CALC is expected to grow
linearly with increasing numbers of processors and pix-
els, while I/O requirements remain constant. Columbia
shows the best overall performance in terms of total run-
time and TPP, followed by ES, Seaborg, and Phoenix.
For example, for P= 64, Columbia achieves a total TPP
of 24.6% compared to only 1.5% on Phoenix. Since
the numerical kernel of invD is computationally inten-

September 2005
NAS Technical Report NAS-05-012



Table 4. Detailed timings for invD

Time (s) Mb/s/P % TPP
Plat- MPI+
form P MPI I/O CALC TOT BW TOT CALC CALC

Sbg 16 4.3 21.0 11.0 36.5 9.5 19.0 63.0 45.2
64 19.7 22.6 17.7 60.1 8.9 23.1 78.3 37.1

256 50.5 23.7 33.3 107.7 8.5 25.8 83.4 33.1
1024 109.4 40.4 64.7 214.8 5.0 25.9 85.8 31.9

ES 16 0.8 41.0 2.0 43.8 4.9 3.0 65.1 47.3
64 1.8 43.3 3.8 48.9 4.6 5.3 68.0 46.4

256 3.7 47.3 7.6 58.6 4.2 8.9 68.4 46.2
1024 7.6 71.7 15.1 94.5 2.8 11.0 69.2 45.9

Phx 16 5.0 2.4 1.8 9.2 84.7 8.9 45.7 12.0
64 13.8 89.1 3.1 106.0 2.2 1.5 51.7 9.6

256 41.4 331.7 5.9 379.0 0.6 0.9 55.6 6.9
Cmb 16 3.4 1.1 2.6 7.2 180.2 24.0 67.6 28.9

64 8.5 1.2 4.3 14.1 166.7 24.6 81.1 27.2
256 13.3 1.0 9.4 23.8 210.5 29.1 73.8 30.6

Figure 4. Relative timings for invD

sive, all architectures sustain a high CALC TPP: for
P = 64, Columbia achieves 81.1% of peak, compared
with 78.3%, 68.0%, and 51.7% on Seaborg, ES, and
Phoenix, respectively. Thus, for this functional compo-
nent of MADbench, the superscalar architectures out-
perform the vector systems in computational efficiency.

In terms of MPI costs, the high-performance single-
stage switch of the ES shows the lowest runtime re-
quirements: 4.7x, 7.6x, and 11x lower than the commu-
nication overhead of Columbia, Phoenix, and Seaborg,
respectively. The read-dominated I/O overhead varies
greatly among the architectures. Columbia shows the
most impressive performance, approximately 20x, 36x,
and 75x higher than Seaborg, ES, and Phoenix. Note
that for P= 256, Phoenix’s I/O bandwidth diminishes
to only 0.5 Mb/s/P. The source of these large discrep-
ancies is primarily due to memory caching that affects
read/write rates differently on each platform.

Figure 4 presents the relative cost of invD compo-
nents for each of the studied architectures. Observe that
on the vector systems, I/O is responsible for a significant

fraction of the total runtime, while the MPI overhead is
relatively negligible. The opposite is true with the super-
scalar systems, which show relatively low I/O overheads
compared with the MPI requirements. Finally, note that
the computational requirements consume a roughly con-
stant fraction of overhead for each architecture regard-
less of processor count.

W Table 5 presents the breakdown of timing compo-
nents for W. Overall, the vector architectures achieve
higher performance than the superscalar systems. For
example, for P= 64, Phoenix is approximately 1.1x,
3.6x, and 7x faster than ES, Columbia, and Seaborg,
respectively. However, ES achieves the highest over-
all TPP at 63.2% while Columbia shows the lowest at
27.2%. Like invD, W performs dense linear algebra cal-
culations and therefore achieves high CALC TPP across
all architectures. ES shows the most impressive results
for the numerical computation, sustaining over 92% of
peak, compared with 69% or less on the other platforms.

Both MPI and I/O shows similar performance char-
acteristics to that of invD, since it is also comprised of
dense algebra calculations. The ES once again achieves
the lowest communication overhead, while the relatively
old switch technology of Seaborg results in the highest
MPI time. Columbia demonstrates impressive I/O (read
dominated) characteristics, sustaining over 215 Mb/s/P
for P = 64: 1.6x, 20x, and 28x faster than Phoenix, ES,
and Seaborg, respectively. However, for P= 256, both
Phoenix and Columbia show anomalously slow I/O be-
havior, achieving only 0.8 Mb/s/P and 2.2 Mb/s/P.

The relative breakdown of costs for W is presented
in Figure 5. These results show that, due to the large
computational requirements, the MPI and I/O overheads
represent a small fraction of the total runtime — thereby
allowing high sustained performance across all architec-

Table 5. Detailed timings for W

Time (s) Mb/s/P % TPP
Plat- MPI+
form P MPI I/O CALC TOT BW TOT CALC CALC

Sbg 16 13.1 17.5 279.5 311.2 11.4 53.6 59.6 57.0
64 79.3 18.2 509.2 608.8 11.0 54.8 65.5 56.6

256 180.2 18.9 1008.3 1209.9 10.6 55.1 66.1 56.1
1024 413.4 30.5 2019.5 2466.7 6.6 54.1 66.0 54.8

ES 16 2.7 26.6 33.9 63.3 7.5 49.4 92.1 85.4
64 5.5 26.0 67.4 98.9 7.7 63.2 92.8 85.7

256 12.3 27.2 134.4 173.9 7.4 71.9 93.0 85.2
1024 25.3 27.5 268.5 321.4 7.3 77.8 93.1 85.1

Phx 16 10.8 2.0 31.2 45.5 100.5 42.9 62.6 46.5
64 24.7 1.5 58.4 86.1 130.7 45.4 66.8 47.0

256 49.2 257.0 113.7 421.4 0.8 18.5 68.7 48.0
Cmb 16 81.3 0.4 80.4 163.2 500.0 25.5 51.8 25.8

64 155.2 0.9 149.1 306.6 215.1 27.2 55.9 27.4
256 40.3 91.6 276.1 409.4 2.2 40.7 60.4 52.7

September 2005
NAS Technical Report NAS-05-012



Figure 5. Relative timings for W

tures for this phase of the MADbench calculation.

5.3 Performance with Multi-Gang

In this section, we analyze the trade-offs inherent in
the multi-gang strategy. As mentioned in Section 4, the
function W can operate in two modes: either all of the
processors work on each matrix-matrix multiplication in
turn, or the processors divide intoNGANG gangs and each
gang independently performsNBIN/NGANG multiplica-
tions. Increasing the data density in this fashion should
increase the efficiency of this step, but since the matrices
are initially block-cyclically distributed over the whole
processor grid, they must be redistributed over the gang
processor grid before multiplication. The relative ef-
ficiency between single- and multi-gang approaches is
therefore a trade-off between the benefit of the faster
multiplication and the cost of the remapping.

Table 6 and Figure 6 show the absolute and relative
timings for W using 16 gangs (with the remap times
for the 1-gang runs shown in parentheses of Table 6).
Compared to Figure 5 (single gang W performance), ob-
serve that the MPI time drops considerably on all ar-
chitectures, as expected. In addition, it is clear that the
CALC time changes by only a small amount. This is
because the optimizeddgemm algorithm performs well
over a large range of matrix sizes.

The relative I/O cost shows no overall pattern, but de-
pends on the architecture. Within W, the amount of I/O
is identical in the single- and multi-gang cases; however,
the interleaving of I/O and calculation is changed. For
the 1-gang runs, one matrix is read and then multiplied;
whereas for the 16-gang runs, all the matrices are read
in and remapped, and only then are all 16 multiplies per-
formed simultaneously. On Seaborg, there is a modest
increase in I/O time when going to 16 gangs at all con-
currencies. On the ES, I/O varies only slightly. Phoenix
and Columbia show only a small change for P= 16 and
64, but large changes at P= 256. In the case of Phoenix,

Table 6. Detailed timings for W using 16
gangs (and remap cost for 1-gang runs)

Time (s) % TPP
Plat- MPI+
form P MPI I/O CALC REMAP RTOT RTOT CALC CALC

Sbg 16 0.0 23.7 207.3 50.4 (9.6) 281.5 59.2 80.4 80.4
64 13.8 20.8 509.3 74.4 (10.5) 618.3 53.9 65.4 63.7

25630.9 36.01016.9193.6 (11.6)1277.3 52.2 65.6 63.6
102483.8 43.72005.1246.1 (26.1)2378.7 56.1 66.5 63.8

ES 16 0.0 23.7 31.4 19.6 (12.8) 74.6 41.9 99.7 99.7
64 0.5 24.6 66.8 25.5 (15.6) 117.4 53.2 93.6 92.8

256 1.9 24.7 133.3 35.1 (31.9) 195.0 64.1 93.8 92.4
1024 7.1 24.8 266.4 61.6 (51.8) 359.8 69.5 93.9 91.4

Phx 16 0.0 0.9 23.3 7.9 (1.9) 32.0 61.0 83.9 83.9
64 4.3 2.0 54.9 7.2 (3.2) 68.5 57.1 71.1 65.9

25617.1303.5 110.9 73.3 (38.2) 504.7 15.5 70.4 61.0
Cmb 16 0.0 1.0 50.4 15.8 (1.0) 67.2 62.0 82.7 82.7

64 12.0 1.6 161.4 24.6 (1.0) 199.6 41.7 51.6 48.1
25612.7 7.6 313.0 — (—) — — 53.2 51.2

Figure 6. Relative timings for W (16 gangs)

the I/O seems generally very sensitive at P= 256; in
the case of Columbia, the cause of the difference is un-
known at this time.

The remapping is performed using the ScaLAPACK
routinepdgemr2d. (The ScaLAPACK remapping func-
tion on Columbia failed for P= 256; SGI engineers are
currently addressing this problem.) For simplicity, and
to maintain a consistent mapping of the data in mem-
ory, the routine is called even in the single-gang case.
However the current implementation ofpdgemr2d takes
no advantage of potential simplifications, but always as-
sumes the worst case data-remapping scenario. It is
thus extremely slow, as evidenced by the parenthetical
1-gang timings in Table 6, where the remappings are
equivalent to each processor performing 17 completely
local 12.5Mb memcopies — over 51 seconds on 1024
processors of the ES! Given this, we are in the process
of developing a custom remapping function which will
considerably reduce the overhead of this phase for both
single- and multi-gang simulations.

September 2005
NAS Technical Report NAS-05-012



6 Summary and Conclusions

In this paper, we presented MADbench, a synthetic
benchmark that preserves the full computational com-
plexity of the underlying scientific application. We
tested the performance of its computation, communica-
tion, and I/O modules both individually and collectively
on four of the world’s most powerful supercomputers.

Figure 7 illustrates the percentage of theoretical peak
performance obtained on each architecture, using 16
gangs in W. Each entry actually consists of four over-
layed bars showing the percentage of peak achieved by
considering (i) the total runtime, (ii) all but the remap-
ping time, (iii) all but the remapping and I/O times,
and (iv) all but the remapping, I/O, and MPI times.
(Note that the 256-processor Columbia run is missing
the white bar since the remapping function failed.)

Figure 7. Percentage of peak performance
for MADbench with 16-gang parallelism

A more perceptive way to interpret Figure 7 is that the
height of the light grey bars reflects the relative cost of
remapping, dark grey the relative cost of I/O, and black
the relative cost of MPI. From this perspective, I/O is a
minor issue for Seaborg, but a significant factor for the
ES at all concurrencies, for Phoenix 64-way or more,
and for Columbia 256-way. The I/O cost for increasing
parallelism is broadly flat for Seaborg, significantly de-
creasing for the ES (reflecting its slow but perfectly scal-
able filesystem), but dramatically increasing for Phoenix
and Columbia. It is also apparent that MPI constitutes a
small overhead for all but Phoenix where it is significant
and increases with concurrency.

We also introduced a new performance profiling tool,
called IPM, and showed that it can be used successfully
on a wide variety of computational platforms to extract
useful performance data. In particular, we were able to
identify the ScaLAPACK functionpdgemr2d as a bot-
tleneck in our algorithm.

A more general conclusion of this work is that greater
clarity in the application context and overall specificity

of performance timings greatly benefit understanding of
how the distinct parts of large-scale parallel applications
interact with the major subsystems of HEC platforms.
It is therefore insufficient to report only the total run-
time for a full-blown scientific application and expect
to understand its parallel performance. As witnessed in
Figures 2-7, the achieved performance will not approx-
imate that seen in simple computational kernels which
model only the compute phase and often vastly overes-
timate sustained performance. Such in-depth analysis is
critical in first understanding and then bridging the gap
between theoretical and sustained parallel performance.

Acknowledgments

The authors thank the ESC for providing access to
the ES, and ORNL for access to the X1. The authors are
grateful to Yoshinori Tsuda, David Parks, and Michael
Wehner for collecting much of the latest ES data. All
authors from LBNL were supported by the Office of Ad-
vanced Scientific Computing Research in the DOE Of-
fice of Science under contract DE-AC03-76SF00098.

References

[1] J. Borrill. MADCAP: The Microwave Anisotropy
Dataset Computational Analysis Package. In5th Euro-
pean SGI/Cray MPP Wkshp., 1999.

[2] T. Dunigan Jr., M. Fahey, J. White III, and P. Worley.
Early evaluation of the Cray X1. InSC2003, 2003.

[3] K. Nakajima. Three-level hybrid vs. flat MPI on the
Earth Simulator: Parallel iterative solvers for finite-
element method. In6th IMACS Intl. Symp. on Iterative
Methods in Scientific Computing, 2003.

[4] L. Oliker, R. Biswas, J. Borrill, A. Canning, J. Carter,
M.J. Djomehri, H. Shan, and D. Skinner. A performance
evaluation of the Cray X1 for scientific applications. In
6th Intl. Mtg. on High Performance Computing for Com-
putational Science, pages 219–232, 2004.

[5] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner,
S. Ethier, R. Biswas, M.J. Djomehri, and R. V. der Wi-
jngaart. Performance evaluation of the SX-6 vector ar-
chitecture for scientific computations.Concurrency and
Computation; Practice and Experience, 17(1):69–93,
2005.

[6] ORNL Cray X1 Evaluation.
http://www.csm.ornl/∼dunigan/cray.

[7] R. Rabenseifner. Recent advances in Parallel Virtual
Machine and Message Passing Interface. In6th Eu-
ropean PVM/MPI Users’ Group Mtg., volume LNCS
1697, pages 35–42, 1999.

[8] Top500 Supercomputer Sites. http://www.top500.org.
[9] H. Uehara, M. Tamura, and M. Yokokawa. MPI perfor-

mance measurement on the Earth Simulator. Technical
Report 15, NEC R&D, 2003.

[10] J. Vetter and A. Yoo. An empirical performance evalua-
tion of scalable scientific applications. InSC2002, 2002.

September 2005
NAS Technical Report NAS-05-012


